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LETHER TO THE EDITOR 

Two ways for Hopf bifurcation with symmetry 

G Cicogna 
Dipartimento di Fisica, Universith di Pisa, Italy 

Received 27 November 1985, in final form 17 January 1986 

Abstract. Two cases are presented of bifurcation problems in the presence of a symmetry: 
it is shown that suitable group theoretical assumptions lead to the existence of Hopf 
bifurcation. 

The problem of the Hopf bifurcation in the presence of a symmetry has already been 
considered in great detail in recent literature (we quote only the papers [ l ,  21; see also 
references therein). There are, however, some further possibilities for the appearance 
of a bifurcation of Hopf type, which do not seem to be fully explored; we refer mainly 
to case 1 below; case 2 in fact is essentially covered in [l], and it is briefly mentioned 
here for comparison and for completeness. 

Let us consider the problem of finding periodic bifurcating solutions of the equation 

U = f ( A ,  U )  f :  R x R N  -+ R N  f ( A ,  0) = 0 (1 )  

where U E R N ,  U = U( t ) ,  A E R, and with the usual regularity assumptions. Assume now 
that this problem is covariant with respect to a symmetry group G, acting on RN 
through a real representation T :  

f(A, T(g)u)  = T(g)f (A,  U )  VgEG (2) 

and assume in particular the following. 

Case 1 .  T is irreducible if considered as a real representation, but, by com- 
plexification of the space, it splits into the direct sum of two irreducible complex 
conjugated representations: 

T = D O ~  (3) 

(with D inequivalent to by otherwise one could be led to the case of a periodic 
‘quatemionic’ bifurcation; see [3,4]). Explicitly, one has 

I m D  R e D  

where I ,  is the n-dimensional unit matrix ( N  = 2n). This implies that there are two 
independent operators which commute with T, namely the N-dimensional unit I N ,  and 
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In particular, then, the linearised part L(A)  =f,(A, 0) has the form 

L ( A ) = a ( A ) l N + b ( A ) J .  (4) 

Therefore, this is an example for case (b) of 0 2 in the paper [ 11, a case which was 

For concreteness, we will assume in this case that G is a unitary group. Let us 
not examined in that reference. 

now suppose that in the basis space C" of D there is a vector 5 such that: 

(a) denoting by H the isotropy subgroup of 6, i.e. 

D(h)5 = 5 V h E  H 

the fixed point subspace of H, i.e. the set of vectors in C" which are left fixed by H, 
is one-dimensional (in a complex sense) and then is spanned only by 6. 

This generalises a typical assumption [5] which, as is well known (see [ l ]  and 
references therein), was at the basis of some theorems concerning bifurcation with 
symmetry. Using a similar argument, assumption (a), together with covariance property 
(2), implies that, putting 

5=x1+ix1'  and x = (XI, XI1) 

the problem ( 1 )  can be restricted to the two-dimensional real subspace X spanned by 
x' and x": 

x = f ( A , x )  f : R x X + X  ( 5 )  

having denoted again by f its restriction to R x X .  The important point is now that 
the original symmetry G induces on X an SO2 covariance: in fact, the action of G on 
X will be 

(m = 0 , 1 , 2 , .  . .) (6 )  5 + 5 eim* and f-, f e - i m d  

and therefore 

(x ')  + (cos m4 -sin m 4 ) (  =r> 
x" sin m 4  cos m4 

Then, apart from the case m = 0, (5) turns out to be covariant with respect to the SO2 
symmetry (6 ' ) .  It can be noted, of course, that in addition to this 'external' or 'spatial' 
covariance, as explained in detail in [l], our (5)  (and also (1)) exhibits a different 
type of SO2 'temporal' covariance, which is intrinsically induced by time 'translations' 
t + t + s (mod T, the period of functions x( t ) ) ,  and acts according to the SO2 representa- 
tion D(s)x( t )  = x ( t + s ) .  In conclusion, one recovers a special type of Hopf problem, 
due to this (spatial) rotational symmetry of ( 5 ) .  Now, standard hypotheses on the 
functions a ( A ) ,  b ( A )  in (4) (e.g. a(Ao) =0, b(Ao) # 0, da(ho)/dA # 0) will directly ensure 
the appearance of a bifurcated periodic solution of the problem ( l ) ,  lying in the 
subspace X. 

As an example, let G = SU,: then, if D is its fundamental three-dimensional complex 
representation acting on the 'quarks' I)" (U = 1,2 ,3) ,  one can choose 6 = I)' and then 
m in (6) is equal to 1. If instead D is the six-dimensional complex representation 
acting on the second-order symmetric tensors I)"B, one can choose 5 = I)11, and then 
m = 2 .  
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Case 2. Suppose now that T is reducible also in the real space RN, and splits into 
the direct sum of two real irreducible equivalent representations 

T = D O D '  D -  D'. (7) 

In this case, the linear part of f ( A ,  U )  has the form ( N  = 2n)  

Assuming that there is in the real basis space of D a vector x1 (and then a vector x2 
for D') satisfying the property (a) in which the word 'complex' is now changed to 
'real' (cf [ 5 ] ) ,  then the problem (1) can be restricted to the two-dimensional real space 
X spanned by xl, x2, just as in case 1, with the main difference that here no spatial 
rotational symmetry is present. In this form, the problem becomes a completely 
standard Hopf bifurcation problem. 

Clearly, for any solution of both cases 1 and 2, one can construct families ('orbits') 
of equivalent solutions by applying the group transformations T ( g ) ,  g E G. 
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