Two ways of Hopf bifurcation with symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 19 L369
(http://iopscience.iop.org/0305-4470/19/7/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on $31 / 05 / 2010$ at 16:15

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Two ways for Hopf bifurcation with symmetry

G Cicogna
Dipartimento di Fisica, Università di Pisa, Italy

Received 27 November 1985, in final form 17 January 1986

Abstract

Two cases are presented of bifurcation problems in the presence of a symmetry: it is shown that suitable group theoretical assumptions lead to the existence of Hopf bifurcation.

The problem of the Hopf bifurcation in the presence of a symmetry has already been considered in great detail in recent literature (we quote only the papers [1, 2]; see also references therein). There are, however, some further possibilities for the appearance of a bifurcation of Hopf type, which do not seem to be fully explored; we refer mainly to case 1 below; case 2 in fact is essentially covered in [1], and it is briefly mentioned here for comparison and for completeness.

Let us consider the problem of finding periodic bifurcating solutions of the equation

$$
\begin{equation*}
\dot{u}=f(\lambda, u) \quad f: R \times R^{N} \rightarrow R^{N} \quad f(\lambda, 0)=0 \tag{1}
\end{equation*}
$$

where $u \in R^{N}, u=u(t), \lambda \in R$, and with the usual regularity assumptions. Assume now that this problem is covariant with respect to a symmetry group G, acting on R^{N} through a real representation T :

$$
\begin{equation*}
f(\lambda, T(g) u)=T(g) f(\lambda, u) \quad \forall g \in G \tag{2}
\end{equation*}
$$

and assume in particular the following.
Case 1. T is irreducible if considered as a real representation, but, by complexification of the space, it splits into the direct sum of two irreducible complex conjugated representations:

$$
\begin{equation*}
T \simeq D \oplus \bar{D} \tag{3}
\end{equation*}
$$

(with D inequivalent to \bar{D}, otherwise one could be led to the case of a periodic 'quaternionic' bifurcation; see [3, 4]). Explicitly, one has

$$
T=\frac{1}{2}\left(\begin{array}{cc}
I_{n} & -\mathrm{i} I_{n} \\
-\mathrm{i} I_{n} & I_{n}
\end{array}\right)(D \oplus \bar{D})\left(\begin{array}{cc}
I_{n} & \mathrm{i} I_{n} \\
\mathrm{i} I_{n} & I_{n}
\end{array}\right)=\left(\begin{array}{cc}
\operatorname{Re} D & -\operatorname{Im} D \\
\operatorname{Im} D & \operatorname{Re} D
\end{array}\right)
$$

where I_{n} is the n-dimensional unit matrix ($N=2 n$). This implies that there are two independent operators which commute with T, namely the N-dimensional unit I_{N}, and

$$
J=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right) .
$$

In particular, then, the linearised part $L(\lambda)=f_{u}^{\prime}(\lambda, 0)$ has the form

$$
\begin{equation*}
L(\lambda)=a(\lambda) I_{N}+b(\lambda) J \tag{4}
\end{equation*}
$$

Therefore, this is an example for case (b) of $\S 2$ in the paper [1], a case which was not examined in that reference.

For concreteness, we will assume in this case that G is a unitary group. Let us now suppose that in the basis space C^{n} of D there is a vector ξ such that:
(a) denoting by H the isotropy subgroup of ξ, i.e.

$$
D(h) \xi=\xi \quad \forall h \in \mathrm{H}
$$

the fixed point subspace of H, i.e. the set of vectors in C^{n} which are left fixed by H , is one-dimensional (in a complex sense) and then is spanned only by ξ.

This generalises a typical assumption [5] which, as is well known (see [1] and references therein), was at the basis of some theorems concerning bifurcation with symmetry. Using a similar argument, assumption (a), together with covariance property (2), implies that, putting

$$
\xi=x^{\prime}+\mathrm{i} x^{\prime \prime} \quad \text { and } \quad x \equiv\left(x^{\prime}, x^{\prime \prime}\right)
$$

the problem (1) can be restricted to the two-dimensional real subspace X spanned by x^{\prime} and $x^{\prime \prime}$:

$$
\begin{equation*}
\dot{x}=f(\lambda, x) \quad f: R \times X \rightarrow X \tag{5}
\end{equation*}
$$

having denoted again by f its restriction to $R \times X$. The important point is now that the original symmetry G induces on X an SO_{2} covariance: in fact, the action of G on X will be

$$
\begin{equation*}
\xi \rightarrow \xi \mathrm{e}^{\mathrm{i} m \phi} \quad \text { and } \quad \bar{\xi} \rightarrow \bar{\xi} \mathrm{e}^{-\mathrm{i} m \phi} \quad(m=0,1,2, \ldots) \tag{6}
\end{equation*}
$$

and therefore

$$
\binom{x^{\prime}}{x^{\prime \prime}} \rightarrow\left(\begin{array}{rr}
\cos m \phi & -\sin m \phi \\
\sin m \phi & \cos m \phi
\end{array}\right)\binom{x^{\prime}}{x^{\prime \prime}} .
$$

Then, apart from the case $m=0$, (5) turns out to be covariant with respect to the SO_{2} symmetry (6'). It can be noted, of course, that in addition to this 'external' or 'spatial' covariance, as explained in detail in [1], our (5) (and also (1)) exhibits a different type of SO_{2} 'temporal' covariance, which is intrinsically induced by time 'translations' $t \rightarrow t+s(\bmod T$, the period of functions $x(t))$, and acts according to the SO_{2} representation $D(s) x(t)=x(t+s)$. In conclusion, one recovers a special type of Hopf problem, due to this (spatial) rotational symmetry of (5). Now, standard hypotheses on the functions $a(\lambda), b(\lambda)$ in (4) (e.g. $a\left(\lambda_{0}\right)=0, b\left(\lambda_{0}\right) \neq 0, \partial a\left(\lambda_{0}\right) / \partial \lambda \neq 0$) will directly ensure the appearance of a bifurcated periodic solution of the problem (1), lying in the subspace X.

As an example, let $\mathrm{G}=\mathrm{SU}_{3}$: then, if D is its fundamental three-dimensional complex representation acting on the 'quarks' $\psi^{\alpha}(\alpha=1,2,3)$, one can choose $\xi=\psi^{1}$ and then m in (6) is equal to 1 . If instead D is the six-dimensional complex representation acting on the second-order symmetric tensors $\psi^{\alpha \beta}$, one can choose $\xi=\psi^{11}$, and then $m=2$.

Case 2. Suppose now that T is reducible also in the real space R^{N}, and splits into the direct sum of two real irreducible equivalent representations

$$
\begin{equation*}
T=D \oplus D^{\prime} \quad D \simeq D^{\prime} \tag{7}
\end{equation*}
$$

In this case, the linear part of $f(\lambda, u)$ has the form ($N=2 n$)

$$
L(\lambda)=\left(\begin{array}{ll}
a_{1}(\lambda) I_{n} & b_{1}(\lambda) I_{n} \tag{8}\\
b_{2}(\lambda) I_{n} & a_{2}(\lambda) I_{n}
\end{array}\right)
$$

Assuming that there is in the real basis space of D a vector x_{1} (and then a vector x_{2} for D^{\prime}) satisfying the property (a) in which the word 'complex' is now changed to 'real' (cf [5]), then the problem (1) can be restricted to the two-dimensional real space X spanned by x_{1}, x_{2}, just as in case 1 , with the main difference that here no spatial rotational symmetry is present. In this form, the problem becomes a completely standard Hopf bifurcation problem.

Clearly, for any solution of both cases 1 and 2 , one can construct families ('orbits') of equivalent solutions by applying the group transformations $T(g), g \in G$.

References

[1] Golubitsky M and Stewart I 1985 Arch. Ration. Mech. Anal. 89107
[2] Sattinger D H 1983 Branching in the presence of Symmetry. BMS-NSF Reg. Conf. Ser. in Applied Mathematics 40 (Philadelphia: SIAM)
[3] Golubitsky M 1983 Bifurcation Theory, Mechanics and Physics ed C P Bruter et al (Dordrecht: Reidel) p 225
[4] Cicogna G and Gaeta G 1985 Lett. Nuovo Cimento 44 65; 1985 Preprint Pisa-Roma
[5] Cicogna G 1981 Lett. Nuovo Cimento 31 600; 1982 Boll. Un. Mat. Ital. 1B 787

